skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liu, Nana"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Solving the time-dependent Schrödinger equation is an important application area for quantum algorithms. We consider Schrödinger's equation in the semi-classical regime. Here the solutions exhibit strong multiple-scale behavior due to a small parameter ℏ , in the sense that the dynamics of the quantum states and the induced observables can occur on different spatial and temporal scales. Such a Schrödinger equation finds many applications, including in Born-Oppenheimer molecular dynamics and Ehrenfest dynamics. This paper considers quantum analogues of pseudo-spectral (PS) methods on classical computers. Estimates on the gate counts in terms of ℏ and the precision ε are obtained. It is found that the number of required qubits, m , scales only logarithmically with respect to ℏ . When the solution has bounded derivatives up to order ℓ , the symmetric Trotting method has gate complexity O ( ( ε ℏ ) − 1 2 p o l y l o g ( ε − 3 2 ℓ ℏ − 1 − 1 2 ℓ ) ) , provided that the diagonal unitary operators in the pseudo-spectral methods can be implemented with p o l y ( m ) operations. When physical observables are the desired outcomes, however, the step size in the time integration can be chosen independently of ℏ . The gate complexity in this case is reduced to O ( ε − 1 2 p o l y l o g ( ε − 3 2 ℓ ℏ − 1 ) ) , with ℓ again indicating the smoothness of the solution. 
    more » « less